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OVERVIEW

TIMELINE

Start: October 2017
End: September 2020
50% complete

BUDGET

Total project funding
$6M / 3 years
$2M per year / 3 Labs

PARTNERS

CalTrans Connected Corridors

HERE Technologies

BARRIERS

Metropolitan scale networks
are too complex to model in
reasonable compute time.

Sensors for capturing
dynamics provide limited view
and are difficult to mine for
relevant information.

Optimization of energy, travel
time and mobility across
complex networks has yet to
be accomplished for real-
world metropolitan scale
networks.




RELEVANCE - PROJECT OBJECTIVES

Overall Objective:

Develop HPC tools to rapidly model large scale transportation
networks using real-world, near real-time data. Integrate energy, travel
time and mobility measures to determine optimization opportunities.

Objectives this Period:

Improved capability for capturing metropolitan scale traffic dynamics with
dynamic routing capabilities — the first step to modeling dynamics
with active control.

Improve estimates of the energy cost and productivity loss of
congestion using data-driven approach.

Analyze real-world sensor data to understand network demand and
improve link level models in the simulation.

Impact:

Develop new active control ideas for connected vehicles that will
optimize energy, travel time and mobility for normal traffic conditions
and networks under stress.




PROJECT GOALS

Develop the data
science and an HPC
supported
computational
framework for building
next-generation
transportation /mobility
and operational
analytics.
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Define appropnat@
role of HPC, ML
and big data
analytics in
transportation

problem domain/
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Automate the “
collection and
validation of real-
world
transportation
data.
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Develop &
asynchronous
distributed state
HPC
transportation
network models.

Identify key transportation specific HPC technology gaps.

Define and access real-world datasets.

Define data veracity analytics for real-world data.

Evaluate ML as a mechanism for analyzing geospatial data.

Automated ingestion with coupled analytics and ML models.

Develop ML models for estimating energy use.

Develop HPC enabled for transportation network modeling tool for large-scale networks.

Integrate HPC traffic assignment models for contrasting optimization modeling.

Couple automated
data ingestion,
learning systems
and large-scale
modeling in a full
metropolitan scale

Energy tracing through HPC enabled models

Define tool integration path and architecture.

modeling platform.




KEY MILESTONES

Define appropriate role of HPC, |Defined goals for Identified traffic assignment Continuing
ML and big data analytics in developing metropolitan optimization research for integration.
transportation problem domain. (scale modeling. Alliances Collaboration established with Dallas
with SF and San Jose. Ft Worth/TTI.
Automate the collection and Go/NoGo - Demonstrated good Use of probe data as On Track
validation of real-world modeling of speed and flow with virtual sensors to
transportation data. DCRNN with automated ingestion of |augment current loop
loop detectors. detectors geospatial
range.
Developed data driven ML models for |Integrated energy On Track
estimating energy consumption. estimation.
Develop large-scale HPC Go/NoGo - Mobiliti model |Go/NoGo - Mobiliti model developed |Investigate Active On Track
enabled transportation network |developed that models that models metropolitan scale Control methods
models. metropolitan scale network |network capability of dynamic routing. |focused on reduction of
with compute time < | energy and increased
minute. mobility.

Couple automated data
ingestion, learning systems and
large-scale modeling in a full
metropolitan scale modeling
platform.

Go/NoGo - Integration
of ML models into the
link dynamic models in

Mobiliti.

Key Go/NoGo milestones have been achieved in FY17/FY 18




COMPONENTS OF THE APPROACH

o A

Mobiliti Framework gii

ENERGY ESTIMATES
Clustering » Vehicle Models Ener
Probe Data | gy Model
Probe Data [ Data Ceaning : —
- - - ¢ Control
Intersection Analytics —» Identification
» Speed/How Prediction

Link Models
- BPR with queuing

DEMAND DATA

MAP DATA
SF & LA Map Node-Link - -
- HERE »{- Unidirectional | —»{ Add Height | - [garop I Routing
- Atiributes Atiribute - travel t_|me optlmlzatlon
= Los Angeles . + dynamic routing for TTQ
Dallas Map
OSM Dallas > Simulation

Energy Based Static
Champ : ~5K Zones, 4 hour . _
SF Demand 7| ~40K MicroAnalysis Zones, minutes T_rafflc Metropolitan S(_:ale
Assignment Traffic Dynamics
Los Angeles | | SCA'\GME)deTand Mobili Energy Based
Demand e Dynamic Traffic
= - Assignment
vacuanuon
Dallas Demand  [—» Demand

EXTERNAL VALIDATION DATA

Travel Time . .
Speeds > Valldatlo'.'
- Uber -TAZ Analytics 6




CHALLENGES WITH SENSOR DATA MODELING

PeMS Data : Inductive loop sensors in major highways
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FORECASTING VEHICLE DYNAMICS USING DCRNN
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Combining the Diffusion Convolution with a Recurrent Neural Network
into a Diffusion Convolutional Recurrent Neural Network (DCRNN) allows for
predicting speeds and flows from inductive loop sensors.




FLOW PREDICTION : 162 LOOP DETECTORS

* District: Los Angeles (D7)
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MEAN AVERAGE ERROR FOR ALL LOOP DETECTORS

output=speed: horizon=60mins
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MAP PARTITIONING USING METIS
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DCRNN RESULTS : NEXT STEP MOBILE DEVICE

output=speed; horizon=60mins output=speed; horizon=60mins
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MOBILITI RESULTS WITH EXPANDED SF DEMAND MODEL

Demand 22M ODS
Network Size 2M links, | M nodes
Run Time | minute

Flow Rate Congestion Delay 13




UBER MOVEMENT VALIDATION OF SIMULATION

uber
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IMPACTS OF SYSTEM LEVEL DYNAMIC ROUTING

Average Reroute Time Saved per hour

Average reroute savings per hour by start time
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) Ten million minutes of travel time, 64 thousand gallons of
\ fuel (across 25% of vehicles), and $2.24 million
_ productivity loss were saved due to dynamic rerouting, at
g / the cost of increasing total distance by 368 thousand

extra vehicle kilometers.




ENERGY CONSUMPTION ESTIMATES FROM REAL-WORLD
MOBILE DEVICE DATA

ML Derived Fuel and Energy Consumption Rates

Sample Trajectory in Congestion . :
P l 4 & for Plug-In Hybrid Vehicles from ANL D3 Datasets
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ML MODELS FOR ENERGY CONSUMPTION RATE FOR

SAMPLE TRAJECTORIES ON 1210
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RESPONSE TO PREVIOUS YEAR COMMENTS

Comment : The problem being solved is critical to the = Uncoordinated active control
type of simulations needed for transportation planning. e o s m———
Reducing computation time is critical if these and

other models are going to be useful.

We thank the reviewers for the positive comments about
the impact this effort can have on the goals of DOE.

2
xogle

Comment : Project Team is just scratching the surface, but that team has to think
of “what the end game” is for analysis.

r
%

The impact of HPC has great promise to change the way planners approach
transportation planning. We have made significant progress in the first phase by
leveraging existing tools in the super computing community. We already have some
active control on our roadways. We hope to provide the capability to design active
control strategies by routing for energy reduction across the full fleet of
future connected vehicles. Emergency management planning could benefit greatly
from metropolitan scale simulations that can be run for large numbers of scenarios
with this magnitude of reduction in computation time.




COLLABORATION AND COORDINATION

N National Laboratories : HPC Modeling
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CHALLENGES AND PROPOSED FUTURE RESEARCH

Use of mobile device data as virtual sensors to expand geospatial
extent of sensing capabilities for government agencies

Integration of additional real-world sensors — eg. weather

Understanding how to integrate learned link dynamics into
existing simulation while maintaining reduced computational time

Validation with other simulation efforts — TTl and Texas A&M
Validation with Uber speed data

Validation of data driven energy estimates from mobile device
trajectories

Next Phase : Surrogate ML models from Mobiliti results
Open sourcing of Mobiliti for multiple cities
Development of active control algorithms for connected vehicles

Any proposed future work is subject to change based on funding levels. 0




SUMMARY

Expanded Mobiliti simulation
capability to model 22M OD
integrated micro analysis zones
Developed active control mechanism
in Mobiliti

Integrated Traffic Assignment models
into the framework for comparison
and validation

Validating model with Uber travel time
data

Introduced well performing ML
models for capturing traffic dynamics
using loop sensors

Developed data driven energy models
from mobile device trajectories for 7
vehicle types

Average Lmﬂk Speeds for Bay Area
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TECHNICAL BACKUP SLIDES

22




MOBILITI LAYERED ARCHITECTURE

P /\\ Mobiliti: provides the domain-specific logic that defines the
& >] < ) actors and events of a traffic system, and determines the
N2\

o \]g/}l L W parallel domain decomposition mapping actors to ranks

Simulation Time ———

Devastator: implements Jefferson’s Time Warp optimistic
parallel discrete event protocol [1] to handle event scheduling,
execution, rollback, commit, and global virtual time

GASNet-Ex: provides high-performance inter-process
communications across distributed memory, in particular for
small active messages

[1] David R. Jefferson. 1985.Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (July 1985),404-425
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USING ML FOR PREDICTING TRAFFIC METRICS

PeMS is.0

Clearing..is_'?-

The Data Clearinghouse provides a single
access point for downloading PeMS data
sets. You can use this page to quickly locate
data by district, month and format.

After selecting the district, the type of data
set, and clicking the submit button, you will
be presented with a calendar for that data
set. The chart shows you what months (and
completeness) are available. We present a
year of data at a time for ease of
downloading.

File Formats & Data Sets

PeMS exports data in a variety of file
formats including HPMS and comma-
delimited ASCII text. Each file format has an
associated list of data sets that it supports.
For example, the HPMS standard specifies
four distinct record types: stations, volumes,
vehicle classification and truck weights. The
exact list of data sets depends on the data
sources available to PeMS.

Download Actions

Your browser configuration dictates the
action taken once a file has been
downloaded. Please check your browser
documentation to determine the where the
file is located and default action that occurs
once the download has been completed.

Compress uit Faras

You will need a file compression utility
capable of handling gzip and bzip2 formats.

Automated Scripts

All file downloads are recorded in the PeMS
database. Please do not use automated
scripts to retrieve data through this service.
If using a batch downloading tool, please
configure it to visit links serially. PeMS will
block concurrent download requests.

Reference

FIPS State and County Codes

pems.dot.ca.aov

Type

District

Data includes:
* Timestamp

[ Station

5-Minute 4| District7 4 Submit

D7 2017 Station 5-Minute

J

19 =

FM A M ] J A

Data Summary * LOOP IDS

S O N D This dataset contains the standard PeMS rollup of raw detector Y D' M
data. The algorithms used to process raw detector data are |Str|Ct
described in the System Help.

18
17

Months with data are indicated by a gray rectangle. Click a [ ] Fr’eeway name

16
s

14

rectangle to view a listing of files available for download.
* Freeway direction

13

12

Field Specification

* Total flow
Available Files ° Average speed

Name

Timestamp

Station

District
Freeway #

Direction
of Travel

Lane Type

Station
Length

Samples

%

Comment Units d07_text_station_5min_2017_01_01.txt.gz 29,904,775

The date and time of the beginning of the d07_text_station_5min_2017_01_02.txt.gz 29,818,202

summary interval. For example, a time of d07_text_station_5min_2017_01_03.txt.gz 30,539,262

08:00:00 indicates that the aggregate(s) contain . .

measurements collected between 08:00:00 and d07_text_station_Smin_2017_01_04.txt.gz 30,796,270 ® ~

08:04:59. Note that second values are always 0 d07_text_station_5min_2017_01_05.txt.gz 30,902,921 s e n SO rs
for five-minute aggregations. The format is

MM/DD/YYYY HH24:MI:SS. d07_text_station_5min_2017_01_06.txt.gz 31,103,360

Unique station identifier. Use this value to cross- d07_text_station_Smin_2017_01_07.txt.gz 30,247,905

reference with Metadata files. d07_text_station_5min_2017_01_08.txt.gz 29,894,169

District #
Freeway #
N|SIE|W

A string indicating the type of |
values (and their meaning are;|

CD (Coll/Dist)
CH (Conventional Hig|
FF (Fwy-Fwy connect
FR (Off Ramp)

HV (HOV)

ML (Mainline)

OR (On Ramp)

Segment length covered by th
miles/km.

Total number of samples recei
Percentage of individual lane p

Erved (e

Given:
* Historic traffic metrics [speed, flow]
* Road network distance and connectivity
Predict:
Future traffic metrics
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GRAPH REPRESENTATION OF ROAD NETWORK

Transportation network as graph
* V =Vertices (sensors)
* E = Edges (roads)
* A =Weighted adjacency matrix

(A function of the road network distance)

distnet(vi, vj)z

a2

Ajj = exp (— ) if distnet(vi,vj) < K

distnet(vi, vj): road network distance from v; to vj,
k: threshold to ensure sparsity, ¢ variance of all pairwise road network distances
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LSTM MODELS FOR ENERGY CONSUMPTION PLUG-IN
HYBRID ELECTRIC VEHICLES

a: 2012 Nissan Leaf
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TRAJECTORY FUEL CONSUMPTION RATES WRT
TRAJECTORY AVERAGE SPEED AND SPEED VARIANCE

Average Trajectory Speed and

Speed Variance Dominant
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